Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36769908

RESUMEN

This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.

2.
J Environ Manage ; 331: 117260, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36681029

RESUMEN

The scope of this study consists of setting up of an integrated cost-effective sampling & laboratory analyses procedure which delineates sampling, sub-sampling and analytical uncertainties in case of fine-grained extractive waste deposits. This procedure is designed to support the decision makers towards fine-grained waste deposits upcycling and land reclamation. This procedure consists of a balanced replicated sampling design (BRSD) coupled with a three split levels ANOVA data processing. The paper provides the readership with the mathematical backgrounds of the three split level ANOVA analysis (3L-ANOVA) and an Excel algorithm for its implementation. Also, the paper presents an example of implementation of the developed methods in the case of a Romanian iron ore tailings (IOT) old pond. The findings of the paper consist of: a) argues, based on OM, SEM-EDS, XRFS and XRD observations, that classical TOS is ineffective for fine-grained waste deposits; b) BRSD in conjunction with 3L-ANOVA analysis is the only approach fit for reliable characterization of the fine-grained stockpiles; c) sampling uncertainty is the critical factor of the uncertainty budget of the analyte concentration; d) Lilliefors approach is adequate for the hypothesis testing where or not the measurand is normal distributed; e) The outcomes of the BRDSD&3L-ANOVA investigations carried on Teliuc tailings, estimated at circa 5.5* 106 m3, consist mainly of mineral quantification at lot level i.e. quartz ∼54% (±7%), hematite ∼15% (±3%), calcite ∼11% (±3%), MgO 3% (±1%), Al2O3 9% (±2%). The concentrations of some CRMs like Ti, V, Ba, Y, W were found at ACE limits and their associated relative expanded uncertainties overpass 50%. Thus, the expanded uncertainties clearly depict the reliability of acquired data for the decision makers regarding waste valorization. f) The IOT into Teliuc can be upcycled as minerals for cement and ceramic industries as well as for geopolymer manufacture. Also, IOT can be downcycles as filler in road construction and mine closure. Finally, the Teliuc yard can be rehabilitated with zero-waste left behind. The data exactness provided by this procedure can be increased to any desirable level through increasing the number of collected items, but the cost of sampling and analyses increases proportionally. In such circumstances, the posted approach can be tailored at the stakeholder request as to safely underpin the decision to turn finegrained by-products into valuable secondary resources, facilitating a greater circularity of the mining industry.


Asunto(s)
Compuestos de Hierro , Estanques , Rumanía , Reproducibilidad de los Resultados , Minerales/análisis
3.
J Funct Biomater ; 13(3)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36135559

RESUMEN

Bi-phasic calcium phosphates (BCPs) are considered prominent candidate materials for the fabrication of bone graft substitutes. Currently, supplemental cation-doping is suggested as a powerful path to boost biofunctionality, however, there is still a lack of knowledge on the structural role of such substituents in BCPs, which in turn, could influence the intensity and extent of the biological effects. In this work, pure and Mg- and Sr-doped BCP scaffolds were fabricated by robocasting from hydrothermally synthesized powders, and then preliminarily tested in vitro and thoroughly investigated physically and chemically. Collectively, the osteoblast cell culture assays indicated that all types of BCP scaffolds (pure, Sr- or Sr-Mg-doped) delivered in vitro performances similar to the biological control, with emphasis on the Sr-Mg-doped ones. An important result was that double Mg-Sr doping obtained the ceramic with the highest ß-tricalcium phosphate (ß-TCP)/hydroxyapatite mass concentration ratio of ~1.8. Remarkably, Mg and Sr were found to be predominantly incorporated in the ß-TCP lattice. These findings could be important for the future development of BCP-based bone graft substitutes since the higher dissolution rate of ß-TCP enables an easier release of the therapeutic ions. This may pave the road toward medical devices with more predictable in vivo performance.

4.
Materials (Basel) ; 15(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161201

RESUMEN

Zr0.8Sn0.2TiO3 (ZST) powders synthesized by solid-state reaction were subject to processing by spark plasma sintering (SPS). A single-phase ceramic with a high relative density of 95.7% and 99.6% was obtained for sintering temperatures of 1150 °C and 1200 °C, respectively, and for a dwell time of 3 min. In order to reduce the oxygen vacancies, as-sintered discs were annealed in air at 1000 °C. The dielectric loss of the annealed samples, expressed by the Q × f product, measured in the microwave (MW) domain, varied between 35 THz and 50 THz. The intrinsic losses (Q × f ~ 60 THz) were derived by using terahertz time-domain spectroscopy (THz-TDS).

5.
Materials (Basel) ; 14(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466267

RESUMEN

Terahertz time-domain spectroscopy (THz-TDS) was employed for estimation of intrinsic dielectric loss of Zr0.8Sn0.2TiO4 (ZST) ceramics. Single-phase ZST dielectric resonators (DRs) with various synthesis parameters and, consequently, different extrinsic losses, were prepared by conventional ceramic technology. Even though the DRs exhibit a similar microstructure, their quality factor (Q is the inverse of dielectric loss tangent) measured in microwave (MW) domain at 6 GHz varies between 2500 and 8400. On the other hand, it was found that the THz dielectric loss is less sensitive to the sample preparation. The intrinsic losses (Q × f ~60 THz) of the ZST ceramics have been derived from THz data.

6.
Nanomaterials (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126507

RESUMEN

In this work, the metal and semiconducting nanoparticles (AgNPs, ZnONPs and AgZnONPs) were phyto-synthesized using aqueous vegetal extracts from: Caryophyllus aromaticus L. (cloves) and Citrus reticulata L. (mandarin) peels. The morphological, structural, compositional, optical and biological properties (antibacterial activity, and cytotoxicity) of the prepared composites were investigated. The most effective sample proved to be AgZnONPs, derived from cloves, with a minimum inhibitory concentration (MIC) value of 0.11 mg/mL and a minimum bactericidal concentration (MBC) value of 2.68 mg/mL. All the other three composites inhibited bacterial growth at a concentration between 0.25 mg/mL and 0.37 mg/mL, with a bactericidal concentration between 3 mg/mL and 4 mg/mL. The obtained composites presented biocidal activity against Staphylococcus aureus, and biocompatibility (on human fibroblast BJ cells) and did not damage the human red blood cells. Additionally, an important result is that the presence of silver in composite materials improved the bactericidal action of these nanomaterials against the most common nosocomial pathogen, Staphylococcus aureus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...